
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 10 – Functions (cont)

www.umbc.edu

Last Class We Covered

• Functions

–Why they’re useful

–When you should use them

• Calling functions

• Variable scope

• Passing parameters

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Quick Announcement

• Update made to the output (but not the
directions) for Homework 4, Part 2

• Exclamation marks are valid if they appear
anywhere in the password, not only at the end

Please enter a password: sciencerules

The password is all lowercase, so it must contain

the character ! to be secure.

Please enter a password: science!rules

Thanks for picking the password science!rules

4

www.umbc.edu

Today’s Objectives

• To introduce value-returning functions

• To better grasp how values in the scope of a
function actually work

• To understand mutability (and immutability)

• To practice function calls

5

www.umbc.edu6

Review: Parts of a Function

www.umbc.edu

Function Vocabulary

7

def myFunc(year, name):

lines of code

more lines of code

def main():

myFunc(2015, "Xavier")

main()

_______ ____
_____ _________

_____ _________

_______ ___

www.umbc.edu

Function Vocabulary

8

def myFunc(year, name):

lines of code

more lines of code

def main():

myFunc(2015, "Xavier")

main()

function n___
f____ p________

a____ p________

function
d______

function c__

function
b___

www.umbc.edu

Function Vocabulary

9

def myFunc(year, name):

lines of code

more lines of code

def main():

myFunc(2015, "Xavier")

main()

function name
formal parameters

actual parameters

function
body

function call

function
definition

www.umbc.edu10

File Layout and Constants

www.umbc.edu

Layout of a Python File

11

File: gradeGetter.py

Author: Dr. Gibson

MIN_GRADE = 0

MAX_GRADE = 100

def getInput(min, max):

msg = "Please enter..."

val = int(input(msg))

while val < min or val > max:

more code here

return val

def main():

grade = getInput(MIN_GRADE, MAX_GRADE)

print("You got a", grade)

main()

header comment

constants

definitions for all
functions other

than main()

main() definition

call to main()

www.umbc.edu

Global Constants

• Globals are variables declared outside
of any function (including main())

• Accessible globally in your program

– To all functions and code

• Your programs may not have global variables

• Your programs may use global constants

– In fact, constants should generally be global

12

www.umbc.edu13

Return Statements

www.umbc.edu

Giving Information to a Function

• Passing parameters provides a mechanism for
initializing the variables in a function

• Parameters act as inputs to a function

• We can call a function many times and get
different results by changing its parameters

14

www.umbc.edu

Getting Information from a Function

• We’ve already seen numerous examples of
functions that return values

int() , str(), input(), etc.

• For example, int()

– Takes in any string as its parameter

– Processes the digits in the string

– And returns an integer value

15

www.umbc.edu

Functions that Return Values

• To have a function return a value after it is
called, we need to use the return keyword

def square(num1):

return the square

return (num1 * num1)

16

www.umbc.edu

Handling Return Values

• When Python encounters return, it

– Exits the function (immediately!)

• Even if it’s not the end of the function

–Returns control back to where
the function was called from

• The value provided in the return statement is
sent back to the caller as an expression result

17

www.umbc.edu

Code Trace: Return from square()

18

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()

Let’s follow the flow of the code

www.umbc.edu

Code Trace: Return from square()

19

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Let’s follow the flow of the code

www.umbc.edu

Code Trace: Return from square()

20

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5

Let’s follow the flow of the code

www.umbc.edu

Code Trace: Return from square()

21

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()

Let’s follow the flow of the code

www.umbc.edu

Code Trace: Return from square()

22

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()

Let’s follow the flow of the code

www.umbc.edu

Code Trace: Return from square()

23

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x

Let’s follow the flow of the code

num1: 5

www.umbc.edu

Code Trace: Return from square()

24

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x
Step 7: Calculate num1 * num1

Let’s follow the flow of the code

num1: 5

www.umbc.edu

Code Trace: Return from square()

25

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x
Step 7: Calculate num1 * num1

Step 8: Return to main() and set y = return statement

Let’s follow the flow of the code

num1: 5

www.umbc.edu

Code Trace: Return from square()

26

def main():

x = 5

y = square(x)

print(y)

main()

def square(num1):

return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()

Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x
Step 7: Calculate num1 * num1

Step 8: Return to main() and set y = return statement
Step 9: Print value of y

Let’s follow the flow of the code

www.umbc.edu

Testing: Return from square()

>>> print(square(3))

9

>>> print(square(4))

16

>>> x = 5

>>> y = square(x)

>>> print(y)

25

>>> print(square(x) + square(3))

34

27

www.umbc.edu28

Island Example

www.umbc.edu

1. Function square() is called

a. Make copy of x’s value (no name yet)

b. Pass value of x to square()

29

X = 5

5

Images from pixabay.com www.umbc.edu

www.umbc.edu

1. Function square() is called

a. Make copy of x’s value (no name yet)

b. Pass value of x to square()

30

5

Images from pixabay.com

X = 5

www.umbc.edu

1. Function square() is called

a. Make copy of x’s value (no name yet)

b. Pass value of x to square()

31

5

Images from pixabay.com

X = 5

www.umbc.edu

1. Function square() is called

a. Make copy of x’s value (no name yet)

b. Pass value of x to square()

c. Assign value to num1

32 Images from pixabay.com

X = 5 5
num1

= 5

www.umbc.edu

num1
= 5

1. Function square() is called

a. Make copy of x’s value (no name yet)

b. Pass value of x to square()

c. Assign value to num1

d. Execute num1 * num1

a. (No name for it yet)

33 Images from pixabay.com

X = 5

25

www.umbc.edu

num1
= 5

1. Function square() is called

a. Make copy of x’s value (no name yet)

b. Pass value of x to square()

c. Assign value to num1

d. Execute num1 * num1

a. (No name for it yet)

e. Return calculated value

34 Images from pixabay.com

X = 5

25

25

www.umbc.edu

www.umbc.edu

1. Function square() is called

a. Make copy of x’s value (no name yet)

b. Pass value of x to square()

c. Assign value to num1

d. Execute num1 * num1

a. (No name for it yet)

e. Return calculated value

35 Images from pixabay.com

X = 5
25

www.umbc.edu

1. Function square() is called

a. Make copy of x’s value (no name yet)

b. Pass value of x to square()

c. Assign value to num1

d. Execute num1 * num1

a. (No name for it yet)

e. Return calculated value

f. Assign value to y

36 Images from pixabay.com

X = 5

25y = 25

www.umbc.edu37

None and Common Problems

www.umbc.edu

Every Function Returns Something

• All Python functions return a value

– Even if they don’t have a return statement

• Functions without an explicit return
pass back a special object, called None

– None is the absence of a value

38

www.umbc.edu

Common Errors and Problems

• Writing a function that returns a value but…

• Forgetting to include the return statement
>>> def multiply(num1, num2):

... print("doing", num1, "*", num2)

... answer = num1 * num2

>>> product = multiply(3, 5)

doing 3 * 5

>>> print(product)

None

39

Variable assigned to
the return value will

be None

www.umbc.edu

Common Errors and Problems

• Writing a function that returns a value but…

• Forgetting to assign that value to anything
>>> def multiply(num1, num2):

... print("doing", num1, "*", num2)

... return num1 * num2

>>> product = 0

>>> multiply(7, 8)

doing 7 * 8

>>> print(product)

0
40

The variable product was not
updated; the code should have read
product = multiply(7, 8)

www.umbc.edu

Common Errors and Problems

• If your value-returning functions produce
strange messages, check to make sure you
used the return correctly!

TypeError: 'int' object is not iterable

TypeError: 'NoneType' object is not

iterable

41

www.umbc.edu42

“Modifying” Parameters

www.umbc.edu

Bank Interest Example

• Suppose you are writing a program that
manages bank accounts

• One function we would need to create is one
to accumulate interest on the account

43

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

www.umbc.edu

Bank Interest Example

• We want to set the balance of the account to
a new value that includes the interest amount

44

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main() Is this what
we expected?

1000

Image from pixabay.com

What is the output
of this code?

www.umbc.edu

What’s Going On?

• It was intended that the 5% would be
added to the amount, returning $1050

• Was $1000 the expected output?

• No – so what went wrong?

• This is a very common mistake to make!

– Let’s trace through the code and figure it out

45

www.umbc.edu

Tracing the Bank Interest Code

• First, we create two variables that are local to
main()

46

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main()

local variables
of main()

www.umbc.edu

Tracing the Bank Interest Code

• Second, we call addInterest() and
pass the values of the local variables of
main() as actual parameters

47

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main()

Call to
addInterest()

Passing the values
stored in amount

and rate, which are
local variables

www.umbc.edu

Tracing the Bank Interest Code

• Third, when control is passed to addInterest(),
the formal parameters of (balance and rate) are set
to the actual parameters of (amount and rate)

48

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main()

Control passes to
addInterest()

balance = amount = 1000

rate = rate = 0.05

www.umbc.edu

Tracing the Bank Interest Code

• Even though the parameter rate appears in both
main() and addInterest(), they are two
separate variables because of scope

49

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

balance = newBalance

def main():

amount = 1000

rate = 0.05

addInterest(amount, rate)

print(amount)

main()

Even though rate
exists in both
main() and

addInterest(),

they are in two
separate scopes

www.umbc.edu

Scope

• In other words, the formal parameters
of a function only receive the values of
the actual parameters

• The function does not have access
to the original variable in main()

50

www.umbc.edu51

Updating Bank Interest Example

www.umbc.edu

New Bank Interest Code

52

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

return newBalance

def main():

amount = 1000

rate = 0.05

amount = addInterest(amount, rate)

print(amount)

main()

www.umbc.edu

New Bank Interest Code

53

def addInterest(balance, rate):

newBalance = balance * (1 + rate)

return newBalance

def main():

amount = 1000

rate = 0.05

amount = addInterest(amount, rate)

print(amount)

main()

These are the only
parts we changed

www.umbc.edu

Announcements

• HW 4 is out on Blackboard now

– All assignments will be available only on
Blackboard until after the due date

– Complete the Academic Integrity Quiz to see it

– Due by Friday (March 3rd) at 8:59:59 PM

• Project 1 will come out this weekend

– Read it closely, but do not start on it yet!

– We will discuss the (required) design in class

54

