CMSC201
Computer Science | for Majors

Lecture 10 — Functions (cont)

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted www.umbc.edu

Last Class We Covered

Functions

—Why they’re useful

—When you should use them
Calling functions

Variable scope

Passing parameters

www.umbc.edu

Any Questions from Last Time?

3 www.umbc.edu

Quick Announcement

 Update made to the output (but not the
directions) for Homework 4, Part 2

* Exclamation marks are valid if they appear
anywhere in the password, not only at the end

Please enter a password: sciencerules

The password is all lowercase, so it must contain
the character ! to be secure.

Please enter a password: science'!rules

Thanks for picking the password sciencel!rules

www.umbc.edu

Today’s Objectives

To introduce value-returning functions

To better grasp how values in the scope of a

function actually work

To understand mutability (and immutability)

To practice function calls

www.umbc.edu

Review: Parts of a Function

6 www.umbc.edu

Function Vocabulary

def myFunc (year, name): |

lines of code e
more lines of code

def main () :
—=> myFunc (2015, "Xavier")

main () —

7 www.umbc.edu

Function Vocabulary

function n

function
d

function c

\ f P
(_A_\ function
def myFunc(year, name): |

lines of code e
more lines of code

def main () :

—=> myFunc (2015, "Xavier")

main () %_,

d P

www.umbc.edu

function
definition

Function Vocabulary

function name

formal parameters
\\ (—A—\ function
def myFunc(year, name): | pody
lines of code “—
more lines of code

def main () :

function call _

—> myFunc (2015, "Xavier")

main () %_,

actual parameters

www.umbc.edu

File Layout and Constants

10 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

11

Layout of a Python File

i # File: gradeGetter.py
: # Author: Dr. Gibson

header comment

constants

gdef getInput (min, max):

"

msg = "Please enter...
val = int(input(msg))
while val < min or val > max:

definitions for all
functions other

than main() # more code here
return val
: main() :

print("You got a", grade)

www.umbc.edu

12

Global Constants

Globals are variables declared outside
of any function (including main ())

Accessible globally in your program

— To all functions and code

Your programs may not have global variables

Your programs may use global constants

— In fact, constants should generally be global

www.umbc.edu

Return Statements

13 www.umbc.edu

14

Giving Information to a Function

* Passing parameters provides a mechanism for
initializing the variables in a function

* Parameters act as inputs to a function

* We can call a function many times and get
different results by changing its parameters

www.umbc.edu

Getting Information from a Function

 We've already seen numerous examples of
functions that return values

int () ,str(), input(), etc.

* For example, int ()

— Takes in any string as its parameter
— Processes the digits in the string
— And returns an integer value

15 www.umbc.edu

Functions that Return Values

e To have a function return a value after it is
called, we need to use the return keyword

def square (numl) :

return the square

return (numl * numl)

16 www.umbc.edu

Handling Return Values

* When Python encounters return, it

— Exits the function (immec

e Even if it’s not the end of t

iately!)

ne function

— Returns control back to w

nere

the function was called from

* The value provided in the return statement is

sent back to the caller as an

17

expression result

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Code Trace: Return from square ()

Let’s follow the flow of the code

def square (numl) :

f 1 :
def main () return numl * numl

x =5
y = square (x)
print(y)

== main ()

Step 1: Callmain ()

18 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Code Trace: Return from square ()

Let’s follow the flow of the code

def square (numl) :

f 1 :
def main () return numl * numl

x =5
y = square (x)
print(y)

== main ()

Step 1: Callmain ()
Step 2: Pass control to def main ()

19 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Code Trace: Return from square ()

Let’s follow the flow of the code

def square (numl) :
return numl * numl

== def main():

x =5

y = square (x)

print(y)
main ()

Step 1: Callmain ()
Step 2: Pass control to def main ()
Step3:Setx = 5

20 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Code Trace: Return from square ()

Let’s follow the flow of the code

21

def square (numl) :

f 1 :
def main () return numl * numl

— X = 5
y = square (x)
print(y)
main ()

Step 1: Callmain ()

Step 2: Pass control to def main ()
Step3:Setx = 5

Step 4: See the function call to square ()

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Code Trace: Return from square ()

Let’s follow the flow of the code

def square (numl) :

f 1 :
def main () return numl * numl

x =25
—>» y = square (x)
print(y)
main ()

Step 1: Callmain ()

Step 2: Pass control to def main ()
Step3:Setx = 5

Step 4: See the function call to square ()

Step 5: Pass control frommain () to square ()

22 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Code Trace: Return from square ()

Let’s follow the flow of the code

—>» def square (numl) :

f 1 :
def main () return numl * numl

x =95

y = square (x)

print (y) numl: | 5
main ()

Step 1: Callmain ()

Step 2: Pass control to def main ()
Step3:Setx = 5

Step 4: See the function call to square ()

Step 5: Pass control frommain () to square ()
Step 6: Set the value of numl in square () to x

23 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Code Trace: Return from square ()

Let’s follow the flow of the code

—>» def square (numl) :

f 1 :
def main () return numl * numl

x =95

y = square (x)

print (y) numl: | 5
main ()

Step 1: Callmain ()

Step 2: Pass control to def main ()
Step3:Setx = 5

Step 4: See the function call to square ()

Step 5: Pass control frommain () to square ()
Step 6: Set the value of numl in square () to x
Step 7: Calculate numl * numl

24 www.umbc.edu

AN

HONORS UNIVERSITY IN MARYLAND

Code Trace: Return from square ()

Let’s follow the flow of the code

25

def square (numl) :

def main(): == return numl * numl

x =95

y = square (x)

print (y) numl: | 5
main ()

Step 1: Callmain ()

Step 2: Pass control to def main ()

Step3:Setx = 5

Step 4: See the function call to square ()

Step 5: Pass control frommain () to square ()

Step 6: Set the value of numl in square () to x

Step 7: Calculate numl * numl

Step 8: Returntomain () and set y =return statement

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Code Trace: Return from square ()

Let’s follow the flow of the code

def square (numl) :

f 1 :
def main () return numl * numl

x =5
== y = square (x)
print(y)
main ()

Step 1: Callmain ()

Step 2: Pass control to def main ()

Step3:Setx = 5

Step 4: See the function call to square ()

Step 5: Pass control frommain () to square ()

Step 6: Set the value of numl in square () to x

Step 7: Calculate numl * numl

Step 8: Returntomain () and set y =return statement
Step 9: Print value of y

26 www.umbc.edu

27

Testing: Return from square ()

>>> print (square(3))

9
>>> print (square (4))
16

>>> x = 5

>>> y = square (x)

>>> print(y)

25

>>> print (square(x) + square(3))
34

www.umbc.edu

Island Example

28 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

1. Function square () iscalled
a. Make copy of x’s value (no name yet)
b. Passvalue of x to square ()

X

) o

29 Images from pixabay.com www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

1. Function square () iscalled
a. Make copy of x’s value (no name yet)
b. Passvalue of x to square ()

e

o R -

30 Images from pixabay.com www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

1. Function square () iscalled
a. Make copy of x’s value (no name yet)
b. Passvalue of x to square ()

o) \\\\\

X=5

in() squ;x

3 1 Images from pixabay.com www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

1. Function square () iscalled
a. Make copy of x’s value (no name yet)
b. Passvalue of x to square ()

), 7 c. Assignvalueto numl

| l';r;,'/ "_:. " i "

X=5

32 Images from pixabay.com www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

1. Function square () iscalled
Make copy of x’s value (no name yet)

a
b. Passvalue of x to square ()
c. Assignvalueto numl \\\\\\
d

Execute numl * numl
a. (Noname for it yet)

33 Images from pixabay.com www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

1. Function square () iscalled
Make copy of x’s value (no name yet)

), 7 Assign value to numl

a.
b. Passvalue of x to square ()
C.

... .

"~
r
| 1’

Execute numl * numl
a. (Noname for it yet)

e. Return calculated value

X=5

;,,0

34 Images from pixabay.com www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

1. Function square () iscalled
Make copy of x’s value (no name yet)

Assign value to numl

7
4
/////,,/ 8
Wi~~~

a.
b. Passvalue of x to square ()
C.
d.

i Execute numl * numl

a. (Noname for it yet)

e. Return calculated value

X=5

| TS

35 Images from pixabay.com www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

1. Function square () iscalled
Make copy of x’s value (no name yet)

Assign value to numl

7
4
//////,/ \2

a.
b. Passvalue of x to square ()
C.
d.

T .-~

5 |
| , k _—
7 g 1\
7 < e

Execute numl * numl

- _;'o_‘,
=2
2

a. (Noname for it yet)

—'< N Z

e. Return calculated value
f. Assignvaluetoy

\, X=5
‘55"0

36 Images from pixabay.com www.umbc.edu

None and Common Problems

37 www.umbc.edu

Every Function Returns Something

e All Python functions return a value
—Even if they don’t have a return statement

* Functions without an explicit return
pass back a special object, called None

— None is the absence of a value

38 www.umbc.edu

39

Common Errors and Problems

* Writing a function that returns a value but...

* Forgetting to include the return statement

>>> def multiply (numl, num2) :
print("doing", numl, "*", num2)

.. answer = numl * num2

>>> product = multiply (3, 5)

doing 3 * 5
>>> print (product)
None

Variable assigned to
the return value will
be None

www.umbc.edu

Common Errors and Problems

* Writing a function that returns a value but...

* Forgetting to assign that value to anything
>>> def multiply (numl, num2) :
print("doing", numl, "*", num2)
.. return numl * num?2
>>> product = 0
>>> multiply (7, 8) The variable product was not

doing 7 * 8 updated; the code should have read
>>> print (product) | product = multiply(7, 8)

0

40 www.umbc.edu

Common Errors and Problems

* |f your value-returning functions produce

strange messages, check to make sure you
used the return correctly!

TypeError: 'int' object is not iterable

TypeError: 'NoneType' object is not
iterable

41 www.umbc.edu

“Modifying” Parameters

42 www.umbc.edu

43

Bank Interest Example

e Suppose you are writing a program that
manages bank accounts

e One function we would need to create is one
to accumulate interest on the account

def addInterest (balance, rate):
newBalance = balance * (1 + rate)
balance = newBalance

www.umbc.edu

Bank Interest Example

e We want to set the balance of the account to
a hew value that includes the interest amount

def addInterest (balance, rate):
newBalance = balance * (1 + rate)

bal = Bal ; |
JTANEE T DEWEAtanee | Whatis the output _a
def main|(): of this code? (
amount = 1000 ; / L

addInterest (amount, rate)
print (amount)
main () Is this what

we expected?

44 Image from pixabay.com www.umbc.edu

45

What’s Going On?

It was intended that the 5% would be
added to the amount, returning $1050

Was $1000 the expected output?

No — so what went wrong?
This is a very common mistake to make!
— Let’s trace through the code and figure it out

www.umbc.edu

Tracing the Bank Interest Code

* First, we create two variables that are local to
main ()

def addInterest (balance, rate):
newBalance = balance * (1 + rate)
balance = newBalance

def main|() :
local variables ﬂamount = 1000
of main () rate = 0.05
addInterest (amount, rate)

print (amount)
main ()

46 www.umbc.edu

Tracing the Bank Interest Code

 Second, we calladdInterest () and

pass the values of the local variables of
main () as actual parameters

def addInterest (bal Passing the values
newBalance = b3 stored in amount fe)

balance = newBg .4 rate, which are

local variables

def main|() :

amount = 1000

Call to rate = 0.05 A
addInterest () \ addInterest (amount, rate)

print (amount)
main ()

47 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Tracing the Bank Interest Code

* Third, when control is passed to addInterest (),
the formal parameters of (balance and rate) are set
to the actual parameters of (amount and rate)

def addInterest (balance, rate):
Control passes to / newBalance = b nce (1 + rate)

addInterest() balance = newBajance
def main() : balancef/= amount = 1000
rate = rate = 0.05
amount =

rate = 0.05
addInterest (amount, rate)
print (amount)

main ()

48 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Tracing the Bank Interest Code

* Even though the parameter rate appears in both
main () and addInterest (), they are two
separate variables because of scope

def addInterest (balanc rate) :

Even though rate
exists in both
main () and

addInterest(),
they are in two
separate scopes

alance * (1 + rate)
= newBalance

main () :
amount = 1000
rate = 0.05

49

addInterest (amount, rate)
print (amount)
main ()

www.umbc.edu

50

Scope

* |n other words, the formal parameters
of a function only receive the values of

the actual parameters

* The function does not have access
to the original variable in main ()

www.umbc.edu

Updating Bank Interest Example

51 www.umbc.edu

New Bank Interest Code

def addInterest (balance, rate):
newBalance = balance * (1 + rate)
return newBalance

def main() :
amount = 1000
rate = 0.05
amount = addInterest (amount, rate)
print (amount)

main ()

52 www.umbc.edu

New Bank Interest Code

def addInterest (balance,

rate) :

newBalance = balance * (1 + rate)

return newBalance

def main () :

amount = 1000
rate = 0.05

These are the only
parts we changed

addInterest (amount, rate)

print (amount)
main ()

53

www.umbc.edu

Announcements

e HW 4 is out on Blackboard now

— All assignments will be available only on
Blackboard until after the due date

— Complete the Academic Integrity Quiz to see it
— Due by Friday (March 3rd) at 8:59:59 PM

* Project 1 will come out this weekend
— Read it closely, but do not start on it yet!
— We will discuss the (required) design in class

54 www.umbc.edu

